Evolving System Families in Space and Time

Gabriela Karoline Michelon
LIT Secure and Correct Systems Lab
Institute for Software Systems Engineering
Johannes Kepler University Linz
Linz, Upper Austria, Austria
gabriela.michelon@jku.at

ABSTRACT

Managing the evolution of system families in space and time, i.e.,
system variants and their revisions is still an open challenge. The
software product line (SPL) approach can support the management
of product variants in space by reusing a common set of features.
However, feature changes over time are often necessary due to
adaptations and/or bug fixes, leading to different product versions.
Such changes are commonly tracked in version control systems
(VCSs). However, VCSs only deal with the change history of source
code, and, even though their branching mechanisms allow to de-
velop features in isolation, VCS does not allow propagating changes
across variants. Variation control systems have been developed to
support more fine-grained management of variants and to allow
tracking of changes at the level of files or features. However, these
systems are also limited regarding the types and granularity of
artifacts. Also, they are cognitively very demanding with increas-
ing numbers of revisions and variants. Furthermore, propagating
specific changes over variants of a system is still a complex task
that also depends on the variability-aware change impacts. Based
on these existing limitations, the goal of this doctoral work is to
investigate and define a flexible and unified approach to allow an
easy and scalable evolution of SPLs in space and time. The expected
contributions will aid the management of SPL products and support
engineers to reason about the potential impact of changes during
SPL evolution. To evaluate the approach, we plan to conduct case
studies with real-world SPLs.

CCS CONCEPTS

- Software and its engineering — Software productlines; Trace-

ability; Software reverse engineering; Reusability; Preproces-
sors.

KEYWORDS

software product lines, software evolution, feature-oriented soft-
ware development, version control systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC °20, October 19-23, 2020, MONTREAL, QC, Canada

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7570-2/20/10...$15.00
https://doi.org/10.1145/3382026.3431252

ACM Reference Format:

Gabriela Karoline Michelon. 2020. Evolving System Families in Space and
Time. In 24th ACM International Systems and Software Product Line Confer-
ence - Volume B (SPLC ’20), October 19-23, 2020, MONTREAL, QC, Canada.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3382026.3431252

1 INTRODUCTION AND MOTIVATION

The increasing diversity of end-user needs leads to new require-
ments such as different platforms, operational systems, compilers,
and new/customized features, i.e., system functionalities. Hence,
companies must produce many variants of their software system to
fulfill such demand [25]. Software product line (SPL) engineering
is an approach often used to manage system families by systematic
reuse of a common set of assets [29]. In SPL features are the building
blocks used to distinguish its products, which characterize the sys-
tem variability. Variability mechanisms can be implemented with
language-based approaches, e.g., by feature-oriented programming,
which consists of a composition-based approach that decomposes
a system, ideally in one module or component per feature. The
system variability can also be implemented by tool-driven mecha-
nisms, such as version control systems (VCSs), preprocessors, and
build systems [1].

VCSs have been used to manage concurrent variants of a system,
i.e., products of an SPL, similar to a clone-and-own strategy, by their
branching, forking, and merging capabilities [6]. With branches,
the VCSs offer the management of variants as they enable to store
and to identify versions of components of a software. However,
each variant of a system is continuously maintained and evolved
over time, which leads to numerous revisions of the variant [35].
For instance, a revision of a variant can be the result of refactoring,
fixing a bug, improving a non-functional property, or adapting the
system to a new platform or environment. These revisions can lead
to many changes in one or more features or the common base code.
Thus, a modification of artifacts can involve the propagation of
changes and the need to merge these changes in multiple variants.
Therefore, managing system families with a unified mechanism to
address both system evolution in space and time is still an open
challenge in software engineering, directly affecting the activities
of developers and engineers and software quality [4].

Developing an SPL requires evolving the whole platform, which
can affect many variants. Furthermore, over time the number of
revisions and variants to handle increases, which implies dealing
with a higher number of logical expressions. Hence, it becomes a
cognitively complex task [16]. Existing mechanisms do not pro-
vide variability-aware change impact analysis. Thus, there is a
need for a unified approach providing mechanisms to manage sys-
tem families evolving in space and time. This approach should be

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

able to propagate changes in an automated way with consistency
checking. Therefore, the goal of this doctoral work is to investigate
mechanisms and define an approach for easing the evolution and
management of system families in space and time.

In this way, we will investigate and propose solutions for the
maintenance and evolution of SPLs by versioning systems at the
level of features. Hence, managing versions of variants at the level
of feature revisions will result in different implementations for the
same features. Therefore, our proposed approach will provide a
mechanism to identify the kinds of modification of features and
to determine how these modifications affect existing variants con-
taining their previous revision. In the case of different behaviors or
feature interactions, a new revision must be added to the feature.
When the behavior remains, the change will be permanently done in
the revision of the feature, but recover the previous implementation
must be possible. To check inconsistencies and valid configurations
of feature revisions, our proposed approach also aims to provide a
reverse engineering mechanism to retrieve a feature revision model
from existing system variants. We thus will cope with integrated
mechanisms in the VarCS to reflect the problem space through fea-
ture models containing feature revisions. Finally, we will conduct
experiments with real-world scenarios, namely actively-developed
open-source projects, to evaluate the usefulness of the proposed ap-
proach. We have already performed an empirical analysis of feature
evolution. We assume that managing an SPL at the level of feature
revisions may ease the maintenance and evolution tasks [24]. We
also have conducted an evaluation of an existing technique and tool
for locating feature revisions [24], which is an essential previous
step to come up with a solution for automating the propagation of
changes over variants.

We expect by this doctoral research to contribute to the state-of-
the-art and practice by: (i) providing support for software system
developers to determine and understand the impact of system fami-
lies” evolution; (ii) empirical analyzing the need of evolving system
families by dealing with feature revisions; (iii) easing the manage-
ment of products of an SPL by means of feature revisions; and (iv)
motivating tool developers to implement instances of our approach
to managing system families evolving in space and time.

The remaining of this paper is structured as follows: Section 2
discusses existing mechanisms and their limitations for managing
system families in space and time. Section 3 states clearly our re-
search goal and describes the intended research methodology, as
well as the proposed approach and its evaluation. Section 5 presents
the preliminary results achieved so far. Finally, in Section 6 we show
our work plan outlining the steps until the doctoral defense.

2 STATE OF THE ART

Modern VCSs can help to deal with versions (change history), but
they are limited to aid the variability management of artifacts at
a higher level of abstraction, such as the feature level. Yet, they
do not properly support unified and integrated management of
artifacts of an SPL, such as keeping traceability between variability
information (e.g., feature models) and the specific type of artifact
(e.g., source code). However, as systems rarely consist of a single
type of artifact, it is necessary to use additional mechanisms to
manage and evolve all artifacts based on individual features of an

Gabriela Karoline Michelon

SPL [16]. Currently, VCSs are limited on providing mechanisms to
deal with preprocessor directives (#ifdefs) to maintain (e.g., bug
fixing) and to evolve system variants (e.g., adding a cross-cutting
feature). There is no clear separation of concerns and preprocessors
only operate on textual implementation artifacts like source code
and cannot be used for models or diagrams [16]. Furthermore, an-
notations based on preprocessor directives can be error-prone, as
they lead to subtle syntax errors (e.g., when an opening bracket is
annotated without its corresponding closing one) [22]. Due to these
limitations, we can find in the literature the proposal of variation
control systems (VarCS), which provide capabilities to integrate the
management of revisions and variants of software. However, they
also have limitations, such as support to specific types and granu-
larity of implementation artifacts [16]. Furthermore, according to
the survey of Linsbauer et al. [16], there is not enough evidence
demonstrating their success in real-world scenarios. This lack of
practical evidence may hinder or not motivate the use of VarCS. In
addition, VarCSs do not consider the concern of developers to be
dependent on a particular style of artifact repository assumed by
these systems. Thus, an approach that offers a unified mechanism
for managing system families in both space and time is still missing
in the literature and needs to be further explored [4].

3 RESEARCH METHODOLOGY AND
APPROACH

Aiming to find possible solutions for the challenging management
of system evolution in both space and time, our research is guided
by an overall research goal:

RG. Supporting the management of system families evolving
in space and time at the level of feature revisions.

To support the system evolution in space and time, our research
methodology involves several steps. Firstly, (i) understanding how
features of systems evolve in space and time, in terms of their im-
plementation and behavior, by empirically analyzing the extent and
context of feature evolution. Secondly, (ii) proposing an approach
to deal with feature revisions in SPLs, by easing the management of
system families evolving in space and time. Lastly (iii) conducting
case studies with the proposed approach for evaluating its useful-
ness in practice. Next, we explain in more detail how we intend to
carry out each step of our empirical analysis. We also present in
detail the proposed approach, discuss important implementation
aspects, and show how we intend to evaluate it.

3.1 Empirical Analysis of Feature Evolution

Based on the assumption that a specific feature at different points
in time can have multiple implementations and introduce different
and additional system behaviors, we have pointed out the need for
managing system families at the level of feature revisions. Thus,
we have been conducting an empirical analysis of the feature life
cycle and experiments with system families with a set of feature
revisions from a real-world scenario. The empirical analysis consists
of mining how much and in what context features change over time.

3.1.1 Mining how much features change over time. The goal of this
step is to investigate how much features change over time in terms

Evolving System Families in Space and Time

of size, complexity, and behavior. This will help to comprehend how
developers implement, maintain, and evolve features over time and
help us to be aware of how to improve existing mechanisms for
managing SPLs in space and time. For collecting this information,
we need a tool able to mine feature revisions. We have already made
progress on mining information on feature revisions by developing
a tool to investigate the frequency of feature changes, the scope
of feature modification, and the impact of changes in feature vari-
ability and complexity of SPLs in VCSs. Our tool can analyze the
life cycle of features overall commits of C/C++ preprocessor-based
systems managed in a VCS. We start the mining process by cloning
the system repository. To collect information from the repository,
we capture all commits of all releases and preprocess every C/C++
source file to get a clean version of the annotated code from macro
definitions and functions. We adopt a strategy to get the features
that belong to a specific block of code. Therefore, we need to ana-
lyze every feature annotated above the specific block of code that
changed and has interaction with the feature from the changed
block expression.

Figure 1 shows an example of conditional blocks, which allows
us to explain our strategy. External features are the ones that can
be selected or deselected as a configuration option in a variant. The
internal features, then, are the ones that are defined at some point in
the source files. In Figure 1 the features A and Y are external while B,
X and C are internal. If a change happens in the conditional block in
line 9 (the file on the left side of Figure 1), we analyze every feature
that has an impact on activating the block of code in line 8. A queue
of implications is created by an extraction process of configuration
constraints from code [28]. To create the queue of implications,
we analyze every condition above the conditional block of line 8
and the header file included, which contains #defines of features.
The #defines directives also must be considered, as the feature X
in the enclosing conditional block. The expression of the changed
conditional block contains feature B that is defined if feature A is not
defined. It also contains the feature C that is defined in the #include
file, if feature Y is selected. In this example, we create a queue of
implications for feature B where it will contain the implication:
(-A = B =10) A (A = =B).In cases of having #else, we
concatenate in the same way placing as elsePart: (Condition =
(Literal = Value)) A (=Condition = elsePart).

The example shows that manually solving constraint satisfac-
tion problems quickly becomes a time-consuming, complex, and
error-prone task if many constraints and variables are involved in
a block of #ifdef. When features are spread across many files, and
in addition to it have the influence of many defined features inside
header files and/or inside many blocks of #ifdef, it is infeasible to
manually determine the impact of changing a block of code on other
features. Feature expressions may also involve arithmetic opera-
tions and comparisons with numeric values (in the range of integers
or double),. Thus, Boolean satisfiability (SAT) solvers [27] are not
sufficient and constraint satisfaction problem (CSP) solvers [3, 32]
are needed to find possible solutions from the programming con-
straints. We used the CSP Choco Solver!. In case that conditions are
not satisfiable and do not have a solution to which features belong
to which block of code, we know that a specific block of code is

!https://github.com/chocoteam/choco-solver

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

1 [#include "header.h"l::>1 (...)

2 0(...) 2 |#define X
3 [#if !'defined(A) 3(...)

4 #define B 10 4 |#if Y

5 |#endif 5 (...)

6 [(...) 6 #define C 6
7 |#if X 7 <code>
8 #if B > 9 ¢& C > 5 8 |#endif

9 <code>

10 #endif

11 |#endif

Figure 1: Example of conditional blocks.

dead code, i.e., is never executed [34]. Then, the solver receives
the queue of implications built for each feature that influences on
activating the changed conditional block, and we also send the ex-
pression that we would like to have a solution, i.e., to which feature
a changed code belongs to. In this example, we concatenate the
expression from the changed conditional block in line 8 with its
enclosing parent in line 7 and with BASE, because in case we do not
have any closest external feature to a specific changed conditional
block we get a solution that the specific changed conditional block
belongs to the BASE feature.

3.1.2 Mining what kinds of changes were made to features over
time. Besides analyzing feature evolution, we want to identify at
which level of granularity each change was performed and in which
context the change modified the feature, i.e., refactoring or bug
fix. This information is important to analyze the impact in the
system behavior when using a feature revision at one point in
time with revisions of features at another point in time. Hence,
this information can stress the need for better mechanisms and
tools for managing feature revisions. Thus, we can conduct static
analysis on the feature implementation and dynamic analysis on
the system behavior, before and after a change on a feature. Hence,
we will be able to not only mine tangled changes at a specific
point in time as well to classify features changes over time. If a
feature implementation differs syntactically from one point in time
to another, it may be a refactoring change to run the system faster
and/or to make the code more readable. When a change is related to
a bug fix on a feature, thus it may be related to a semantic difference,
because a bug fix changes the feature behavior, and consequently,
the system behavior [13].

Initially, to do this analysis, we will analyze commit messages
to see if it is a bug fix and with static semantic analysis on the
blocks of code that changed to check if it is a refactoring change.
As mentioned by Herzig and Zeller [10], some commits of a system
can consist of tangled changes in VCSs history, which lead to an
incorrect association of changes with bug reports on commit mes-
sages. Hence, a commit can be related to changes in more than one
feature, and the commit message not always reflects which features
and which kind of changes were performed on them. Thus, we will
also investigate some existing approaches for bug and refactoring
detection to get more accurate information about features changes
over time [36]. One possible attempt is to use a deep learning tech-
nique for training a neural network by using as input two chunks

SPLC ’20, October 19-23, 2020, MONTREAL, QC, Canada

of code (the code before and after the change) and as output which
kind of modification it is. Ludwig? is an easy-to-use tool that en-
ables us to quickly train and test deep learning models [26]. We
can also rely on existing tools for clone detection, which enables us
to identify the kind of change performed in a feature at a specific
point in time. Clone detection approaches can be split into two
categories: static analysis based approaches and dynamic analysis
based approaches [14].

3.2 Approach Definition

An SPL consists not only of a concrete implementation of the sys-
tem with different kinds of artifacts (known as the solution space)
but also artifacts of the problem space depicting the interactions
and dependencies of the system’s features [1]. Therefore, our pro-
posed approach, illustrated in Figure 2, helps to deal with the SPL
engineering process in both problem and solution spaces. We split
our approach into four main steps, where (1) focuses on the prob-
lem space and aims at reverse engineering a feature revision model
from existing products of a system. Steps (2), (3), and (4) focus on
the solution space and support the implementation and evolution
of artifacts as well as the composition of products. The following
sub-sections describe these steps in more detail.

3.2.1 Reverse Engineer of a Feature Revision Model (1). To help de-
velopers in deriving new variants using feature revisions, we need
a mechanism to retrieve valid combinations of feature revisions.
Thereby, we need to extend and adapt feature models to reflect
the implementation of feature revisions. Thus, our approach will
include a mechanism to reverse engineer feature revision models
from existing variants of a system, according to their changes over
time. The feature revision models should represent the feature sets
of an SPL at many points in time. To have the information necessary
to retrieve a feature revision model we will use as input (1.1) a set
of existing variants and their respective configurations containing
feature revisions. A revision of a feature will be a number represent-
ing that a specific feature changed, i.e., a revision will represent the
feature at a certain point in time. The reverse engineering process
will start by mapping the artifacts to feature revisions (1.2), which
we explain in more detail in Section 3.3. Then, we will store the
links showing which artifacts belong to which feature revision into
a repository. The mapping will result in traces (1.3), which will be
refined when committing a variant with a feature revision already
linked to artifacts in the repository. To compute the feature revi-
sion model we will analyze the feature revisions’ dependencies and
interactions (1.4). The output feature revision model can then be
retrieved (1.5).

3.22 Derive a new Variant (2). After using all system products
to extract the existing feature revisions in the current family of
systems (Step 1), we will be able to derive variants with different
configurations. Hence, developers can manage an SPL evolving in
space by combining different existing feature revisions. The input
necessary for deriving a new variant will require a configuration
with desired feature revisions (2.1) and an existing feature revision
model stored in the repository (2.2). Then, the configuration will be
checked if it is valid or not (2.3). In the case of a valid configuration,

Zhttps://github.com/uber/ludwig

Gabriela Karoline Michelon

i Reverse Engineer of a
Feature Revision Model :

N

Commit .
Repository

R —— @)

Revision
Model

Reverse @

engineering

N -
(2) [Derive a new Variant

Check
validation

Valid
Configuration?

T @

:Revision
i Model

Warn :
inconsistencies |

2.5
Variants

&
Feature exist?
No 69

Save feature

information

l Refactoring?

33 3.4
Analyze Update Feature
modification Revision Model

1f a new revision of a feature o

’ 74 o 7 \\4/\\ Propagate Changes
VlS\l{AllZC Select variants Propagate
change impacts changes

Update variants

""""""""""" @ 4.6

Traces
Checkout

Variants 1

Variant ID

Figure 2: Workflow of the proposed approach for managing
products of an SPL with a set of feature revisions.

the variant will be retrieved (2.4) as output (2.5). In the case of
inconsistencies between choosing feature revisions, a warning will
be raised (2.6). The warning will make developers aware that there
is a missing or additional feature revision in the configuration.

3.2.3 Commit a feature (3). For evolving a variant, the approach
will also contain a commit operation for an individual feature. The

